awesome-object-detection 目标检测资源合集


Awesome Object Detection based on handong1587 github(



Rich feature hierarchies for accurate object detection and semantic segmentation

Fast R-CNN

Fast R-CNN

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

R-CNN minus R

Faster R-CNN in MXNet with distributed implementation and data parallelization

Contextual Priming and Feedback for Faster R-CNN

An Implementation of Faster RCNN with Study for Region Sampling

Interpretable R-CNN

Light-Head R-CNN

Light-Head R-CNN: In Defense of Two-Stage Object Detector

Cascade R-CNN

Cascade R-CNN: Delving into High Quality Object Detection


Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

Object Detectors Emerge in Deep Scene CNNs

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

Object Detection Networks on Convolutional Feature Maps

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

DeepBox: Learning Objectness with Convolutional Networks


You Only Look Once: Unified, Real-Time Object Detection


darkflow – translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++

Start Training YOLO with Our Own Data


YOLO: Core ML versus MPSNNGraph

TensorFlow YOLO object detection on Android

Computer Vision in iOS – Object Detection


YOLO9000: Better, Faster, Stronger


Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

LightNet: Bringing pjreddie’s DarkNet out of the shadows

YOLO v2 Bounding Box Tool

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

  • intro: LRM is the first hard example mining strategy which could fit YOLOv2 perfectly and make it better applied in series of real scenarios where both real-time rates and accurate detection are strongly demanded.

  • arxiv:


YOLOv3: An Incremental Improvement

  • arxiv:
  • paper:
  • code:
  • github(Official):
  • github:
  • github:
  • github:
  • github:
  • github:


SSD: Single Shot MultiBox Detector


What’s the diffience in performance between this new code you pushed and the previous code? #327


DSSD : Deconvolutional Single Shot Detector

Enhancement of SSD by concatenating feature maps for object detection

Context-aware Single-Shot Detector

Feature-Fused SSD: Fast Detection for Small Objects


FSSD: Feature Fusion Single Shot Multibox Detector

Weaving Multi-scale Context for Single Shot Detector


Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection


Pelee: A Real-Time Object Detection System on Mobile Devices

  • intro: (ICLR 2018 workshop track)

  • arxiv:

  • github:


R-FCN: Object Detection via Region-based Fully Convolutional Networks

R-FCN-3000 at 30fps: Decoupling Detection and Classification

Recycle deep features for better object detection


Feature Pyramid Networks for Object Detection

Action-Driven Object Detection with Top-Down Visual Attentions

Beyond Skip Connections: Top-Down Modulation for Object Detection

Wide-Residual-Inception Networks for Real-time Object Detection

Attentional Network for Visual Object Detection

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

Spatial Memory for Context Reasoning in Object Detection

Accurate Single Stage Detector Using Recurrent Rolling Convolution

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems

Point Linking Network for Object Detection

Perceptual Generative Adversarial Networks for Small Object Detection

Few-shot Object Detection

Yes-Net: An effective Detector Based on Global Information

SMC Faster R-CNN: Toward a scene-specialized multi-object detector

Towards lightweight convolutional neural networks for object detection

RON: Reverse Connection with Objectness Prior Networks for Object Detection

Mimicking Very Efficient Network for Object Detection

Residual Features and Unified Prediction Network for Single Stage Detection

Deformable Part-based Fully Convolutional Network for Object Detection

Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors

Recurrent Scale Approximation for Object Detection in CNN


DSOD: Learning Deeply Supervised Object Detectors from Scratch


Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

  • arxiv:
  • github:


Focal Loss for Dense Object Detection

CoupleNet: Coupling Global Structure with Local Parts for Object Detection

Incremental Learning of Object Detectors without Catastrophic Forgetting

Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection

StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection

Dynamic Zoom-in Network for Fast Object Detection in Large Images

Zero-Annotation Object Detection with Web Knowledge Transfer


MegDet: A Large Mini-Batch Object Detector

Single-Shot Refinement Neural Network for Object Detection

Receptive Field Block Net for Accurate and Fast Object Detection

An Analysis of Scale Invariance in Object Detection – SNIP

Feature Selective Networks for Object Detection

Learning a Rotation Invariant Detector with Rotatable Bounding Box

Scalable Object Detection for Stylized Objects

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

Deep Regionlets for Object Detection

Training and Testing Object Detectors with Virtual Images

Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video

  • keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation
  • arxiv:

Spot the Difference by Object Detection

Localization-Aware Active Learning for Object Detection

Object Detection with Mask-based Feature Encoding

LSTD: A Low-Shot Transfer Detector for Object Detection

Domain Adaptive Faster R-CNN for Object Detection in the Wild

Pseudo Mask Augmented Object Detection

Revisiting RCNN: On Awakening the Classification Power of Faster RCNN

Zero-Shot Detection

Learning Region Features for Object Detection

Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection

Object Detection for Comics using Manga109 Annotations

Task-Driven Super Resolution: Object Detection in Low-resolution Images

Transferring Common-Sense Knowledge for Object Detection

Multi-scale Location-aware Kernel Representation for Object Detection

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

Robust Physical Adversarial Attack on Faster R-CNN Object Detector


DetNet: A Backbone network for Object Detection

  • intro: Tsinghua University & Face++

  • arxiv:


Relation Network for Object Detection

  • intro: CVPR 2018
  • arxiv:

Quantization Mimic: Towards Very Tiny CNN for Object Detection

  • Tsinghua University1 & The Chinese University of Hong Kong2 &SenseTime3

  • arxiv:



电子邮件地址不会被公开。 必填项已用*标注