awesome-object-detection 目标检测资源合集

awesome-object-detection

Awesome Object Detection based on handong1587 github(https://handong1587.github.io/deep_learning/2015/10/09/object-detection.html)

Papers&Codes

R-CNN

Rich feature hierarchies for accurate object detection and semantic segmentation

Fast R-CNN

Fast R-CNN

A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection

Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks

R-CNN minus R

Faster R-CNN in MXNet with distributed implementation and data parallelization

Contextual Priming and Feedback for Faster R-CNN

An Implementation of Faster RCNN with Study for Region Sampling

Interpretable R-CNN

Light-Head R-CNN

Light-Head R-CNN: In Defense of Two-Stage Object Detector

Cascade R-CNN

Cascade R-CNN: Delving into High Quality Object Detection

SPP-Net

Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

DeepID-Net: Deformable Deep Convolutional Neural Networks for Object Detection

Object Detectors Emerge in Deep Scene CNNs

segDeepM: Exploiting Segmentation and Context in Deep Neural Networks for Object Detection

Object Detection Networks on Convolutional Feature Maps

Improving Object Detection with Deep Convolutional Networks via Bayesian Optimization and Structured Prediction

DeepBox: Learning Objectness with Convolutional Networks

YOLO

You Only Look Once: Unified, Real-Time Object Detection

img

darkflow – translate darknet to tensorflow. Load trained weights, retrain/fine-tune them using tensorflow, export constant graph def to C++

Start Training YOLO with Our Own Data

img

YOLO: Core ML versus MPSNNGraph

TensorFlow YOLO object detection on Android

Computer Vision in iOS – Object Detection

YOLOv2

YOLO9000: Better, Faster, Stronger

darknet_scripts

Yolo_mark: GUI for marking bounded boxes of objects in images for training Yolo v2

LightNet: Bringing pjreddie’s DarkNet out of the shadows

https://github.com//explosion/lightnet

YOLO v2 Bounding Box Tool

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

  • intro: LRM is the first hard example mining strategy which could fit YOLOv2 perfectly and make it better applied in series of real scenarios where both real-time rates and accurate detection are strongly demanded.

  • arxiv: https://arxiv.org/abs/1804.04606

YOLOv3

YOLOv3: An Incremental Improvement

  • arxiv:https://arxiv.org/abs/1804.02767
  • paper:https://pjreddie.com/media/files/papers/YOLOv3.pdf
  • code: https://pjreddie.com/darknet/yolo/
  • github(Official):https://github.com/pjreddie/darknet
  • github:https://github.com/experiencor/keras-yolo3
  • github:https://github.com/qqwweee/keras-yolo3
  • github:https://github.com/marvis/pytorch-yolo3
  • github:https://github.com/ayooshkathuria/pytorch-yolo-v3
  • github:https://github.com/ayooshkathuria/YOLO_v3_tutorial_from_scratch

SSD

SSD: Single Shot MultiBox Detector

img

What’s the diffience in performance between this new code you pushed and the previous code? #327

https://github.com/weiliu89/caffe/issues/327

DSSD

DSSD : Deconvolutional Single Shot Detector

Enhancement of SSD by concatenating feature maps for object detection

Context-aware Single-Shot Detector

Feature-Fused SSD: Fast Detection for Small Objects

https://arxiv.org/abs/1709.05054

FSSD

FSSD: Feature Fusion Single Shot Multibox Detector

https://arxiv.org/abs/1712.00960

Weaving Multi-scale Context for Single Shot Detector

ESSD

Extend the shallow part of Single Shot MultiBox Detector via Convolutional Neural Network

https://arxiv.org/abs/1801.05918

Tiny SSD: A Tiny Single-shot Detection Deep Convolutional Neural Network for Real-time Embedded Object Detection

https://arxiv.org/abs/1802.06488

Pelee

Pelee: A Real-Time Object Detection System on Mobile Devices

https://github.com/Robert-JunWang/Pelee

  • intro: (ICLR 2018 workshop track)

  • arxiv: https://arxiv.org/abs/1804.06882

  • github: https://github.com/Robert-JunWang/Pelee

R-FCN

R-FCN: Object Detection via Region-based Fully Convolutional Networks

R-FCN-3000 at 30fps: Decoupling Detection and Classification

https://arxiv.org/abs/1712.01802

Recycle deep features for better object detection

FPN

Feature Pyramid Networks for Object Detection

Action-Driven Object Detection with Top-Down Visual Attentions

Beyond Skip Connections: Top-Down Modulation for Object Detection

Wide-Residual-Inception Networks for Real-time Object Detection

Attentional Network for Visual Object Detection

Learning Chained Deep Features and Classifiers for Cascade in Object Detection

DeNet: Scalable Real-time Object Detection with Directed Sparse Sampling

Discriminative Bimodal Networks for Visual Localization and Detection with Natural Language Queries

Spatial Memory for Context Reasoning in Object Detection

Accurate Single Stage Detector Using Recurrent Rolling Convolution

Deep Occlusion Reasoning for Multi-Camera Multi-Target Detection

https://arxiv.org/abs/1704.05775

LCDet: Low-Complexity Fully-Convolutional Neural Networks for Object Detection in Embedded Systems

Point Linking Network for Object Detection

Perceptual Generative Adversarial Networks for Small Object Detection

https://arxiv.org/abs/1706.05274

Few-shot Object Detection

https://arxiv.org/abs/1706.08249

Yes-Net: An effective Detector Based on Global Information

https://arxiv.org/abs/1706.09180

SMC Faster R-CNN: Toward a scene-specialized multi-object detector

https://arxiv.org/abs/1706.10217

Towards lightweight convolutional neural networks for object detection

https://arxiv.org/abs/1707.01395

RON: Reverse Connection with Objectness Prior Networks for Object Detection

Mimicking Very Efficient Network for Object Detection

Residual Features and Unified Prediction Network for Single Stage Detection

https://arxiv.org/abs/1707.05031

Deformable Part-based Fully Convolutional Network for Object Detection

Adaptive Feeding: Achieving Fast and Accurate Detections by Adaptively Combining Object Detectors

Recurrent Scale Approximation for Object Detection in CNN

DSOD

DSOD: Learning Deeply Supervised Object Detectors from Scratch

img

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

  • arxiv:https://arxiv.org/abs/1712.00886
  • github:https://github.com/szq0214/GRP-DSOD

RetinaNet

Focal Loss for Dense Object Detection

CoupleNet: Coupling Global Structure with Local Parts for Object Detection

Incremental Learning of Object Detectors without Catastrophic Forgetting

Zoom Out-and-In Network with Map Attention Decision for Region Proposal and Object Detection

https://arxiv.org/abs/1709.04347

StairNet: Top-Down Semantic Aggregation for Accurate One Shot Detection

https://arxiv.org/abs/1709.05788

Dynamic Zoom-in Network for Fast Object Detection in Large Images

https://arxiv.org/abs/1711.05187

Zero-Annotation Object Detection with Web Knowledge Transfer

MegDet

MegDet: A Large Mini-Batch Object Detector

Single-Shot Refinement Neural Network for Object Detection

Receptive Field Block Net for Accurate and Fast Object Detection

An Analysis of Scale Invariance in Object Detection – SNIP

Feature Selective Networks for Object Detection

https://arxiv.org/abs/1711.08879

Learning a Rotation Invariant Detector with Rotatable Bounding Box

Scalable Object Detection for Stylized Objects

Learning Object Detectors from Scratch with Gated Recurrent Feature Pyramids

Deep Regionlets for Object Detection

Training and Testing Object Detectors with Virtual Images

Large-Scale Object Discovery and Detector Adaptation from Unlabeled Video

  • keywords: object mining, object tracking, unsupervised object discovery by appearance-based clustering, self-supervised detector adaptation
  • arxiv: https://arxiv.org/abs/1712.08832

Spot the Difference by Object Detection

Localization-Aware Active Learning for Object Detection

Object Detection with Mask-based Feature Encoding

https://arxiv.org/abs/1802.03934

LSTD: A Low-Shot Transfer Detector for Object Detection

Domain Adaptive Faster R-CNN for Object Detection in the Wild

Pseudo Mask Augmented Object Detection

https://arxiv.org/abs/1803.05858

Revisiting RCNN: On Awakening the Classification Power of Faster RCNN

https://arxiv.org/abs/1803.06799

Zero-Shot Detection

Learning Region Features for Object Detection

Single-Shot Bidirectional Pyramid Networks for High-Quality Object Detection

Object Detection for Comics using Manga109 Annotations

Task-Driven Super Resolution: Object Detection in Low-resolution Images

https://arxiv.org/abs/1803.11316

Transferring Common-Sense Knowledge for Object Detection

https://arxiv.org/abs/1804.01077

Multi-scale Location-aware Kernel Representation for Object Detection

Loss Rank Mining: A General Hard Example Mining Method for Real-time Detectors

Robust Physical Adversarial Attack on Faster R-CNN Object Detector

https://arxiv.org/abs/1804.05810

DetNet

DetNet: A Backbone network for Object Detection

  • intro: Tsinghua University & Face++

  • arxiv: https://arxiv.org/abs/1804.06215

Other

Relation Network for Object Detection

  • intro: CVPR 2018
  • arxiv: https://arxiv.org/abs/1711.11575

Quantization Mimic: Towards Very Tiny CNN for Object Detection

  • Tsinghua University1 & The Chinese University of Hong Kong2 &SenseTime3

  • arxiv: https://arxiv.org/abs/1805.02152

项目地址:https://github.com/amusi/awesome-object-detection

未经允许不得转载,请联系zhouas@hotmail.com获取授权:目标检测 » awesome-object-detection 目标检测资源合集

赞 (0) 打赏

评论 1

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
  1. lxt写的不错啊回复

觉得文章有用就打赏一下文章作者

微信扫一扫打赏

鄂ICP备18005284号